Archives for Technology - Page 2

18 Nov

Inversion Fractals and Iteration Processes in the Generation of Aesthetic Patterns

image-1091
image-1091
In this paper, we generalize the idea of star-shaped set inversion fractals using iterations known from fixed point theory. We also extend the iterations from real parameters to so-called q-system numbers and proposed the use of switching processes. All the proposed generalizations allowed us to obtain new and diverse fractal patterns that can be used, e.g. as textile and ceramics patterns. Moreover, we show that in the chaos game for iterated function systems—which is similar to the inversion fractals generation algorithm—the proposed generalizations do not give interesting results.In this paper, we generalize the idea of star-shaped set inversion fractals using iterations known from fixed point theory. We also extend the iterations from real parameters to so-called q-system numbers and proposed the use of switching processes. All the proposed generalizations allowed us to obtain new and diverse fractal patterns that can be used, e.g. as textile and ceramics patterns. Moreover, we show that in the chaos game for iterated function systems—which is similar to the inversion fractals generation algorithm—the proposed generalizations do not give interesting results.
17 Nov

The State-of-the-Art of Set Visualization

image-1092
image-1092
Sets comprise a generic data model that has been used in a variety of data analysis problems. Such problems involve analysing and visualizing set relations between multiple sets defined over the same collection of elements. However, visualizing sets is a non-trivial problem due to the large number of possible relations between them. We provide a systematic overview of state-of-the-art techniques for visualizing different kinds of set relations. We classify these techniques into six main categories according to the visual representations they use and the tasks they support. We compare the categories to provide guidance for choosing an appropriate technique for a given problem. Finally, we identify challenges in this area that need further research and propose possible directions to address these challenges. Further resources on set visualization are available at http://www.setviz.net.Sets comprise a generic data model that has been used in a variety of data analysis problems. Such problems involve analysing and visualizing set relations between multiple sets defined over the same collection of elements. However, visualizing sets is a non-trivial problem due to the large number of possible relations between them. We provide a systematic overview of state-of-the-art techniques for visualizing different kinds of set relations.We classify these techniques into six main categories according to the visual representations they use and the tasks they support. We compare the categories to provide guidance for choosing an appropriate technique for a given problem.
09 Nov

Visualizing Waypoints-Constrained Origin-Destination Patterns for Massive Transportation Data

image-1093
image-1093
Origin-destination (OD) pattern is a highly useful means for transportation research since it summarizes urban dynamics and human mobility. However, existing visual analytics are insufficient for certain OD analytical tasks needed in transport research. For example, transport researchers are interested in path-related movements across congested roads, besides global patterns over the entire domain. Driven by this need, we propose waypoints-constrained OD visual analytics, a new approach for exploring path-related OD patterns in an urban transportation network. First, we use hashing-based query to support interactive filtering of trajectories through user-specified waypoints. Second, we elaborate a set of design principles and rules, and derive a novel unified visual representation called the waypoints-constrained OD view by carefully considering the OD flow presentation, the temporal variation, spatial layout and user interaction. Finally, we demonstrate the effectiveness of our interface with two case studies and expert interviews with five transportation experts.Origin-destination (OD) pattern is a highly useful means for transportation research since it summarizes urban dynamics and human mobility. However, existing visual analytics are insufficient for certain OD analytical tasks needed in transport research. For example, transport researchers are interested in path-related movements across congested roads, besides global patterns over the entire domain. Driven by this need, we propose waypoints-constrained OD visual analytics, a new approach for exploring path-related OD patterns in an urban transportation network. First, we use hashing-based query to support interactive filtering of trajectories through user-specified waypoints.
02 Nov

Recognition-Difficulty-Aware Hidden Images Based on Clue-Map

image-1094
image-1094
Hidden images contain one or several concealed foregrounds which can be recognized with the assistance of clues preserved by artists. Experienced artists are trained for years to be skilled enough to find appropriate hidden positions for a given image. However, it is not an easy task for amateurs to quickly find these positions when they try to create satisfactory hidden images. In this paper, we present an interactive framework to suggest the hidden positions and corresponding results. The suggested results generated by our approach are sequenced according to the levels of their recognition difficulties. To this end, we propose a novel approach for assessing the levels of recognition difficulty of the hidden images and a new hidden image synthesis method that takes spatial influence into account to make the foreground harmonious with the local surroundings. During the synthesis stage, we extract the characteristics of the foreground as the clues based on the visual attention model. We validate the effectiveness of our approach by performing two user studies, including the quality of the hidden images and the suggestion accuracy.Hidden images contain one or several concealed foregrounds which can be recognized with the assistance of clues preserved by artists. Experienced artists are trained for years to be skilled enough to find appropriate hidden positions for a given image. However, it is not an easy task for amateurs to quickly find these positions when they try to create satisfactory hidden images. In this paper, we present an interactive framework to suggest the hidden positions and corresponding results. The suggested results generated by our approach are sequenced according to the levels of their recognition difficulties.
27 Oct

Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment

image-1095
image-1095
The recent introduction of 3D shape analysis frameworks able to quantify the deformation of a shape into another in terms of the variation of real functions yields a new interpretation of the 3D shape similarity assessment and opens new perspectives. Indeed, while the classical approaches to similarity mainly quantify it as a numerical score, map-based methods also define (dense) shape correspondences. After presenting in detail the theoretical foundations underlying these approaches, we classify them by looking at their most salient features, including the kind of structure and invariance properties they capture, as well as the distances and the output modalities according to which the similarity between shapes is assessed and returned. We also review the usage of these methods in a number of 3D shape application domains, ranging from matching and retrieval to annotation and segmentation. Finally, the most promising directions for future research developments are discussed.The recent introduction of 3D shape analysis frameworks able to quantify the deformation of a shape into another in terms of the variation of real functions yields a new interpretation of the 3D shape similarity assessment and opens new perspectives. Indeed, while the classical approaches to similarity mainly quantify it as a numerical score, map-based methods also define (dense) shape correspondences.
26 Oct

Environmental Objects for Authoring Procedural Scenes

image-1096
image-1096
We propose a novel approach for authoring large scenes with automatic enhancement of objects to create geometric decoration details such as snow cover, icicles, fallen leaves, grass tufts or even trash. We introduce environmental objects that extend an input object geometry with a set of procedural effects that defines how the object reacts to the environment, and by a set of scalar fields that defines the influence of the object over of the environment. The user controls the scene by modifying environmental variables, such as temperature or humidity fields. The scene definition is hierarchical: objects can be grouped and their behaviours can be set at each level of the hierarchy. Our per object definition allows us to optimize and accelerate the effects computation, which also enables us to generate large scenes with many geometric details at a very high level of detail. In our implementation, a complex urban scene of 10 000 m2, represented with details of less than 1 cm, can be locally modified and entirely regenerated in a few seconds.We propose a novel approach for authoring large scenes with automatic enhancement of objects to create geometric decoration details such as snow cover, icicles, fallen leaves, grass tufts or even trash. We introduce environmental objects that extend an input object geometry with a set of procedural effects that defines how the object reacts to the environment, and by a set of scalar fields that defines the influence of the object over of the environment. The user controls the scene by modifying environmental variables, such as temperature or humidity fields.
26 Oct

Coordinated Crowd Simulation With Topological Scene Analysis

image-1097
image-1097
This paper proposes a new algorithm to produce globally coordinated crowds in an environment with multiple paths and obstacles. Simple greedy crowd control methods easily lead to congestion at bottlenecks within scenes, as the characters do not cooperate with one another. In computer animation, this problem degrades crowd quality especially when ordered behaviour is needed, such as soldiers marching towards a castle. Similarly, in applications such as real-time strategy games, this often causes player frustration, as the crowd will not move as efficiently as it should. Also, planning of building would usually require visualization of ordered evacuation to maximize the flow. Planning such globally coordinated crowd movement is usually labour intensive. Here, we propose a simple solution that is easy to use and efficient in computation. First, we compute the harmonic field of the environment, taking into account the starting points, goals and obstacles. Based on the field, we represent the topology of the environment using a Reeb Graph, and calculate the maximum capacity for each path in the graph. With the harmonic field and the Reeb Graph, path planning of crowd can be performed using a lightweight algorithm, such that any blocking of one another's paths is minimized. Comparing to previous methods, our system can synthesize globally coordinated crowd with smooth and efficient movement. It also enables control of the crowd with high-level parameters such as the degree of cooperation and congestion. Finally, the method is scalable to thousands of characters with minimal impact to computation time. It is best applied in interactive crowd synthesis systems such as animation designs and real-time strategy games.This paper proposes a new algorithm to produce globally coordinated crowds in an environment with multiple paths and obstacles. Simple greedy crowd control methods easily lead to congestion at bottlenecks within scenes, as the characters do not cooperate with one another. In computer animation, this problem degrades crowd quality especially when ordered behaviour is needed, such as soldiers marching towards a castle. Similarly, in applications such as real-time strategy games, this often causes player frustration, as the crowd will not move as efficiently as it should. Also, planning of building would usually require visualization of ordered evacuation to maximize the flow. Planning such globally coordinated crowd movement is usually labour intensive.
20 Oct

A Procedural Approach to Modelling Virtual Climbing Plants With Tendrils

image-1098
image-1098
Climbing plants with tendrils show search and coiling behaviour. A tendril searches for a host object and then twines around it. Subsequently, the tendril coils to pull the main stem of the climbing plant close to the host object. Furthermore, the stems may also twine around the host object. In this paper, we propose a procedural approach to incrementally constructing virtual climbing plants with tendrils that mimic such behaviour. We developed several simple rules to guide the construction process. Although our approach is not based on a physical or biological concept, it is fast and efficient in generating climbing plants with tendrils, with acceptable quality. We propose techniques that are useful for enhancing the realism of climbing plants in close-up view.Climbing plants with tendrils show search and coiling behaviour. A tendril searches for a host object and then twines around it. Subsequently, the tendril coils to pull the main stem of the climbing plant close to the host object. Furthermore, the stems may also twine around the host object.
20 Oct

Reducing Lateral Visual Biases in Displays

image-1099
image-1099
The human visual system is composed of multiple physiological components that apply multiple mechanisms in order to cope with the rich visual content it encounters. The complexity of this system leads to non-trivial relations between what we see and what we perceive, and in particular, between the raw intensities of an image that we display and the ones we perceive where various visual biases and illusions are introduced. In this paper, we describe a method for reducing a large class of biases related to the lateral inhibition mechanism in the human retina where neurons suppress the activity of neighbouring receptors. Among these biases are the well-known Mach bands and halos that appear around smooth and sharp image gradients as well as the appearance of false contrasts between identical regions. The new method removes these visual biases by computing an image that contains counter biases such that when this laterally compensated image is viewed on a display, the inserted biases cancel the ones created in the retina. User study results confirm the usefulness of the new approach for displaying various classes of images, visualizing physical data more faithfully and improving the ability to perceive constancy in brightness.The human visual system is composed of multiple physiological components that apply multiple mechanisms in order to cope with the rich visual content it encounters. The complexity of this system leads to non-trivial relations between what we see and what we perceive, and in particular, between the raw intensities of an image that we display and the ones we perceive where various visual biases and illusions are introduced. In this paper, we describe a method for reducing a large class of biases related to the lateral inhibition mechanism in the human retina where neurons suppress the activity of neighbouring receptors.
15 Oct

SAR: Stroke Authorship Recognition

image-1100
image-1100
Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR's ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools.Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship.